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Abstract

Our study of perfect spline approximation reveals: (i) it is closely related to SD modulation

used in one-bit quantization of bandlimited signals. In fact, they share the same recursive

formulae, although in different contexts; (ii) the best rate of approximation by perfect splines

of order r with equidistant knots of mesh size h is hr�1: This rate is optimal in the sense that a

function can be approximated with a better rate if and only if it is a polynomial of degree or:
The uniqueness of best approximation is studied, too. Along the way, we also give a result

on an extremal problem, that is, among all perfect splines with integer knots on R; (multiples

of) Euler splines have the smallest possible norms.
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1. Introduction

In the recent years, the research on one-bit quantization of bandlimited signals, in
particular on the so-called SD modulation, has been active, see [2,6,7,10–12,15,16]
and the references therein. The notion of perfect spline approximation is motivated
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by one-bit quantization. We will show later in this paper that they even have exactly
the same recursive formulae, although in quite different contexts.

We begin with the definition of perfect splines. Given h40; let xi :¼ ih; and Th :

¼ fxigi: Denote by Sr ¼ Sh
r ¼ SrðTh;AÞ the space of all splines of order r40 on

the knot sequence Th on a finite or an infinite interval A: It is well known that the
ðr � 1Þst derivative of any spline of order r is piecewise constant. The splines whose
ðr � 1Þst derivative can only be either 1 or �1 on each subinterval ðxi; xiþ1Þ are
called perfect splines. In general, all splines the absolute value of whose ðr � 1Þst
derivative is a constant M40 are also called perfect splines. We denote the set of all
such splines on Th by

PM
r ¼ PM

r ðTh;AÞ :¼ fSASrðTh;AÞ: Sðr�1ÞðxÞ ¼ 7M; xaxig; M40: ð1:1Þ

Note that PM
r is not a linear space at all. It contains all polynomials of degree

exactly r � 1 whose leading coefficient is M=ðr � 1Þ!; but not any polynomials of

degree or � 1: In particular, 0ePM
r : Euler splines are a special case of perfect

splines with h ¼ 1; see Section 3 for more information. We will approximate
functions fACðAÞ with or�1ðf ; hÞoN by perfect splines. Here and throughout the
paper, ok is the usual kth modulus of smoothness of f ; with o0ðf ; tÞ understood as
jjf jj; and jj 	 jj ¼ jj 	 jjCðAÞ denotes the uniform norm on the interval A: If for a

function fACðAÞ; okðf ; t0ÞoN for some t040; then okðf ; tÞoN for any t40:
From now on we shall simply say okðf ; 1ÞoN: The following is our main theorem
of this paper.

Theorem 1. Let rX2 and 0oao1 (called quantization parameter, see [2,7]) be given,
and let fACðAÞ with or�1ðf ; 1ÞoN: Then

Eðf ;PM
r Þ :¼ inf

SAPM
r

jjf � Sjjp
Cor�1ðf ; hÞ if or�1ðf ; hÞ40;

CMhr�1 if or�1ðf ; hÞ ¼ 0;

(
ð1:2Þ

where C is a constant depending only on r and a: The size M of the ðr � 1Þst

derivative Sðr�1Þ for any SAPM
r is chosen as a multiple of h�rþ1or�1ðf ; hÞ in the c

ase of or�1ðf ; hÞ40 (see (2.7) below), and can be freely chosen in the case of

or�1ðf ; hÞ ¼ 0:

Remark. In the second case of (1.2) the value of M can be freely chosen, as small as
one wishes, thus the error can be as close to zero as one wishes. The only reason this
error can not be zero is the requirement of M40 in definition (1.1), which excludes

polynomials of degree or � 1 from PM
r : Later we will show the inequality in the

second case of (1.2) can be replaced by an equality with a specific value of C if A ¼ R;
see the paragraph after Corollary 6.

Theorem 1 can be rewritten in a better-looking but less accurate form by adding
the two terms in (1.2) together and replacing M by e as follows.
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Corollary 2. Under the conditions of Theorem 1, we have

inf
SAPM

r

jjf � SjjpCðor�1ðf ; hÞ þ ehr�1Þ ð1:3Þ

with properly chosen M and any e40: If fAWr�1
N

ðAÞ; then

inf
SAPM

r

jjf � SjjpChr�1ðeþ jjf ðr�1ÞjjÞ: ð1:4Þ

Theorem 1 will be proved in Section 2. In Section 3 we will show the rate in (1.2) is
optimal. The uniqueness of best approximation will also be studied there.

2. Perfect spline approximation

We first introduce some properties of splines. The reader can find details in any
book on splines, such as [3,4,13,14]. If A ¼ R; any SASr can be written as a B-spline
series

SðxÞ ¼
XN

i¼�N

ciNirðxÞ; ð2:1Þ

where

NirðxÞ :¼ Nðx; xi;y; xiþrÞ :¼ ðxiþr � xiÞ½xi;y; xiþr�ð	 � xÞr�1
þ :

The derivative of S can be easily written in terms of lower order B-splines:

S0 ¼ ðr � 1Þ
XN

i¼�N

ci � ci�1

xiþr�1 � xi

Ni;r�1 ¼
XN

i¼�N

Dci

h
Ni;r�1

and in general,

SðjÞ ¼
XN

i¼�N

Djci

hj
Ni;r�j; j ¼ 0; 1;y; r � 1; ð2:2Þ

where D is the difference operator defined by Dci :¼ ci � ci�1; and Dj is the jth power
of D: If A is a finite interval, we assume, without loss of generality, A ¼ ½0; 1�: Let n

be the largest integer such that nho1; i.e., n :¼ Jh�1n� 1; then (2.1) and (2.3)
become

S ¼
Xn

i¼1�r

ciNirðxÞ and SðjÞ ¼
Xn

i¼1�rþj

Djci

hj
Ni;r�j : ð2:3Þ
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Sometimes one considers the half-line A ¼ ½0;NÞ; on which the above become

S ¼
XN

i¼1�r

ciNirðxÞ and SðjÞ ¼
XN

i¼1�rþj

Djci

hj
Ni;r�j : ð2:4Þ

The coefficients of SðjÞ for different values of j are closely related. To reveal the
relationship among them, we define auxiliary quantities

c
ðjÞ
i :¼ h�rþ1Djci; j ¼ 0;y; r � 1: ð2:5Þ

In particular, c
ðr�1Þ
i :¼ h�rþ1Dr�1ci are the coefficients of Sðr�1Þ; which is a piecewise

constant function. We can now rewrite

c
ðjÞ
i ¼ h�rþ1Djci ¼ h�rþ1DðDj�1ciÞ ¼ h�rþ1ðDj�1ci � Dj�1ci�1Þ ¼ c

ðj�1Þ
i � c

ðj�1Þ
i�1

as

c
ðj�1Þ
i ¼ c

ðj�1Þ
i�1 þ c

ðjÞ
i ; c

ðj�1Þ
i�1 ¼ c

ðj�1Þ
i � c

ðjÞ
i ; j ¼ r � 1;y; 1: ð2:6Þ

This means if we know c
ðjÞ
i0

for some i0 and j ¼ 0;y; r � 2; and c
ðr�1Þ
i for all i; then we

can calculate ci ¼ hr�1c
ð0Þ
i for all i: In another word, if we know coefficients for

S;S0;y;Sðr�2Þ at some knot i0; and know all coefficients c
ðr�1Þ
i of Sðr�1Þ; then we can

recover S through recursive addition or subtraction by (2.6). This is a discrete

analogue to the fact that any f in the Sobolev space Wr�1
1 can be recovered from

initial values f ðjÞðaÞ for some a and j ¼ 0;y; r � 2; and f ðr�1ÞðxÞ for all x through
integration.

Let fACðAÞ with or�1ðf ; 1ÞoN: Then there exists a spline GASr such that

jjf � GjjpC1orðf ; hÞp2C1or�1ðf ; hÞ;

therefore

or�1ðG; hÞpor�1ðG � f ; hÞ þ or�1ðf ; hÞpC2or�1ðf ; hÞoN:

Hu and Yu [8] proved that hr�1jjGðr�1Þjj is equivalent to or�1ðG; hÞ with the
equivalence constants depending only on r; that is,

jjGðr�1ÞjjpC3h�rþ1or�1ðG; hÞpC4h�rþ1or�1ðf ; hÞoN:

Let

M :¼
C4a�1h�rþ1or�1ðf ; hÞ if or�1ðf ; hÞ40;

any positive number if or�1ðf ; hÞ ¼ 0:

(
ð2:7Þ

We point out that if or�1ðf ; hÞ40 this M depends on h; and is bounded as h-0 only

for fALipnðr � 1;CÞ; if or�1ðf ; hÞ ¼ 0; M can be chosen arbitrarily small as long as
it is positive, see the remark after Theorem 1. Define g :¼ G=M; then

jjgðr�1Þjj ¼ 1

M
jjGðr�1Þjjpa: ð2:8Þ
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Here we observe that (2.8) is still valid even if or�1ðf ; hÞ ¼ 0; since in this case f ¼ G

and f ðr�1Þ ¼ Gðr�1Þ ¼ 0: The key to prove Theorem 1 is the following theorem, which
is significant by itself.

Theorem 3. For any gASrðTh;AÞ with jjgðr�1Þjjpa; 0oao1; there exists a perfect

spline sAP1
r defined in (1.1), that is, sASr with sðr�1ÞðxÞ ¼ 71; such that

jjg � sjjpChr�1 ¼ Cðr; aÞhr�1: ð2:9Þ

We write g; s; and g � s as B-spline series:

gðxÞ ¼
X

i

aiNirðxÞ; sðxÞ ¼
X

i

biNirðxÞ; ð2:10Þ

gðxÞ � sðxÞ ¼
X

i

ðai � biÞNirðxÞ ¼:
X

i

uiNirðxÞ; ð2:11Þ

where the index i runs over the same range as in (2.1), (2.3), or (2.4), for A ¼ R; ½0; 1�;
or ½0;NÞ; respectively. Similar to (2.5), we define

a
ðjÞ
i :¼ h�rþ1Djai; b

ðjÞ
i :¼ h�rþ1Djbi; u

ðjÞ
i :¼ h�rþ1Djui;

j ¼ 0;y; r � 1: ð2:12Þ

Given faigi; we choose b
ðjÞ
0 ¼ a

ðjÞ
0 ; j ¼ 0;y; r � 2; then

u
ðjÞ
0 ¼ a

ðjÞ
0 � b

ðjÞ
0 ¼ 0; j ¼ 0;y; r � 2: ð2:13Þ

If we have schemes to determine b
ðr�1Þ
i for one i at a time, then u

ðr�1Þ
i ¼ a

ðr�1Þ
i �

b
ðr�1Þ
i ; and u

ð0Þ
i can be calculated by applying (2.16) to u

ðjÞ
i :

u
ðr�2Þ
i ¼ u

ðr�2Þ
i�1 þ u

ðr�1Þ
i ;

u
ðr�3Þ
i ¼ u

ðr�3Þ
i�1 þ u

ðr�2Þ
i ;

^

u
ð0Þ
i ¼ u

ð0Þ
i�1 þ u

ð1Þ
i ;

u
ðr�2Þ
i�1 ¼ u

ðr�2Þ
i � u

ðr�1Þ
i ;

u
ðr�3Þ
i�1 ¼ u

ðr�3Þ
i � u

ðr�2Þ
i ;

^

u
ð0Þ
i�1 ¼ u

ð0Þ
i � u

ð1Þ
i ;

ð2:14Þ

which in turn leads to ui and then bi: The schemes have to be such that the resulting
fuig is bounded by a constant depending only on r and a; which will guarantee (2.9).

Such schemes are said stable. The reason we do not directly apply (2.6) to b
ðjÞ
i to find

all bi but calculate ui first instead is that in all the schemes to be introduced, b
ðr�1Þ
i

will depend on u
ðjÞ
i�1; j ¼ 0;y; r � 2; which give information on the errors in the

function value and the derivatives in the previous step.
The first column of (2.14) turns out to be the same as the discrete dynamical

system that arises from SD modulation, although in different notation and different
context, see [2,7,15,14], etc. As mentioned at the beginning of this paper, our interest
in perfect spline approximation was motivated by SD modulation using oversampled
one-bit quantization, but we did not expect the two areas so closely related with each
other that they share the same recursive relationship among their ‘‘state variables’’.
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For this reason, a stable scheme in SD modulation can be directly used in perfect
spline approximation without change, and vice versa.

Remark. One can readily implement a one-bit quantization scheme using perfect
splines. This can be done by first using a quasi-interpolant operator to approximate
the signal by a spline, which will be our G; and then obtaining a perfect spline
approximation Ms to this G (recall that g ¼ G=M and s is an approximation to g) by
an encoding/decoding scheme described here. The advantage is that the signal can be
recovered by using highly efficient, widely available B-spline evaluation algorithms,
see Chapter 5 of Schumaker’s book [13], and Lyche and Schumaker [9].

In the following we will introduce some versions of schemes used in SD
modulation.

Scheme for r ¼ 2: This is a well known scheme. The forward part (on the left-hand
side) of (2.14) becomes

u
ð0Þ
i ¼ u

ð0Þ
i�1 þ u

ð1Þ
i ¼ u

ð0Þ
i�1 þ a

ð1Þ
i � b

ð1Þ
i ; i ¼ 1; 2; 3;y :

We choose b
ð1Þ
i to minimize u

ð0Þ
i :

b
ð1Þ
i :¼ Signðuð0Þ

i�1 þ a
ð1Þ
i Þ; ð2:15Þ

where

SignðxÞ :¼
1 if xX0;

�1 otherwise:

(

It is trivial to verify that if jað1Þ
i jp1 and juð0Þ

i�1jp1; then juð0Þ
i jp1; thus juð0Þ

i jp1 for all i

by induction.
If A ¼ R; one needs the backward part (the second column) of (2.14), which takes

the form:

u
ð0Þ
i�1 ¼ u

ð0Þ
i � u

ð1Þ
i ¼ u

ð0Þ
i � a

ð1Þ
i þ b

ð1Þ
i :

Then it is natural to modify the forward scheme (2.15) to

b
ð1Þ
i :¼ �Signðuð0Þ

i � a
ð1Þ
i Þ: ð2:16Þ

The boundedness of u
ð0Þ
i can be verified the same way. We shall only discuss the

forward version of each scheme for r42: The interested reader can work out a
backward version for each of the schemes listed below in a way similar to (2.16). We

should point out that we only discuss schemes in which b
ðr�1Þ
i depends only on r � 1

state variables u
ðjÞ
i�1; j ¼ 0;y; r � 2; (and the input a

ðr�1Þ
i ). It is easy to construct a

backward version for this class of schemes. But as the referee of this paper warns, it
is not always straightforward (if possible at all) to do so out of a given general
forward scheme. There are schemes that use more (maybe infinitely many) past state
variables, and there is the question about whether a good initial condition for a
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forward scheme is also good for the corresponding backward scheme if exists. But
these issues are far beyond the scope of this paper.

Scheme A for r ¼ 3: The forward part of (2.14) becomes

u
ð1Þ
i ¼ u

ð1Þ
i�1 þ u

ð2Þ
i ¼ u

ð1Þ
i�1 þ a

ð2Þ
i � b

ð2Þ
i ;

u
ð0Þ
i ¼ u

ð0Þ
i�1 þ u

ð1Þ
i ¼ u

ð0Þ
i�1 þ u

ð1Þ
i�1 þ a

ð2Þ
i � b

ð2Þ
i :

The idea of minimizing juð0Þ
i j as in (2.15) by using

b
ð2Þ
i :¼ Signðuð0Þ

i�1 þ u
ð1Þ
i�1 þ a

ð2Þ
i Þ

does not work. In a numerical experiment, after we hand-picked about 10 values for

a
ð2Þ
i ; u

ð0Þ
i began to oscillate with increasing amplitude. It turns out that minimizing

juð0Þ
i þ u

ð1Þ
i j ¼ juð0Þ

i�1 þ 2u
ð1Þ
i�1 þ 2a

ð2Þ
i � 2b

ð2Þ
i j

by choosing

b
ð2Þ
i :¼ Signðuð0Þ

i�1 þ 2u
ð1Þ
i�1 þ 2a

ð2Þ
i Þ ð2:17Þ

is a much better idea. Daubechies and DeVore [2] showed that fu
ð0Þ
i g calculated by

(2.17) is bounded if a is sufficiently small. In a numerical experiment, we used for a
ð2Þ
i

in (2.17) random numbers from ½�0:5; 0:5�; and found

juð0Þ
i jo2:1; juð1Þ

i jo1:9; juð0Þi þ u
ð1Þ
i jo2:7 for 0pip108:

Scheme B for r ¼ 3: (Daubechies and DeVore [2])

b
ð2Þ
i :¼ Signðuð1Þ

i�1 þ M1 Signðuð0Þ
i�1ÞÞ; ð2:18Þ

that is,

b
ð2Þ
i :¼

Signðuð1Þ
i�1Þ if juð1Þ

i�1j4M1;

Signðuð0Þ
i�1Þ otherwise;

(

where M1 :¼ 2ð1 þ aÞ:

Remark. Özgür Yilmaz proved in a recent paper [16] the stability of a very general
scheme for r ¼ 3: While there are ad hoc schemes for rp6 in electric engineering
practice, the following scheme by Daubechies and DeVore [2] is the very first
stability result for any r greater than 3 by our best knowledge.

Scheme for arbitrary order rX3: One can generalize (2.18) to

b
ðr�1Þ
i :¼ Signðuðr�2Þ

i�1 þ M1 Signðuðr�3Þ
i�1 þ?Mr�3 Signðuð1Þ

i�1

þ Mr�2 Signðuð0Þ
i�1ÞÞ?ÞÞ; ð2:19Þ

where Mj ; j ¼ 1;y; r � 2; are constants depending on r and a:
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Lemma 4 (Daubechies and DeVore [2]). Let rX3;

K1 :¼ 5ð1 þ aÞ
1 � a

� �
þ 2 and M1 :¼ 2ð1 þ aÞ:

Then fu
ð0Þ
i g generated by (2.19) is bounded:

juð0Þ
i jp1

2
ð3K1Þr�24ðr�2Þðr�3ÞM1: ð2:20Þ

We are now ready to prove Theorem 3.

Proof of Theorem 3. We only show the case A ¼ ½0;NÞ: It is similar for A ¼ R or

½0; 1�: Given gðxÞ ¼
P

N

i¼0 aiNirðxÞ with jaðr�1Þ
i jpao1; we choose b

ðjÞ
0 ¼ a

ðjÞ
0 ; j ¼

0;y; r � 2; and choose b
ðr�1Þ
i as in (2.15) if r ¼ 2; or as in (2.19) if rX3: Then

juð0Þ
i jpC; where C ¼ 1 if r ¼ 2; or as in (2.20) if rX3: This gives

juij ¼ jai � bijpChr�1 for i ¼ 1; 2; 3;y : ð2:21Þ

It is well known that the cN norm of fuig ¼ fai � big is no less than the LN norm of
g � s:

jjg � sjjpjjfuigjjcN : ð2:22Þ

The Jackson inequality (2.9) follows immediately from this and (2.21). &

Proof of Theorem 1. We define S :¼ MsASr; where M is defined by (2.7). Then

jjSðr�1Þjj ¼ Mjjsðr�1Þjj ¼ M: From Theorem 3 we have

jjf � Sjjp jjf � Gjj þ jjG � SjjpC1orðf ; hÞ þ Mjjg � sjj

p
Cor�1ðf ; hÞ if or�1ðf ; hÞ40;

CMhr�1 if or�1ðf ; hÞ ¼ 0;

(

with C depending only on r and a:

3. The rate of perfect spline approximation

In this section we prove the approximation rate (1.2) is optimal. First we

prove that if A ¼ R then hr�1 is optimal in the case of or�1ðf ; hÞ ¼ 0 by showing
that even for f ðxÞ 
 0 in (1.2), or gðxÞ 
 0 in Theorem 3, the approximation error

by perfect splines is still CMhr�1 with an explicit value for C: In fact, we will
identify best approximations to any fACðRÞ with or�1ðf ; hÞ ¼ 0; (or in another
word, for any fAPr�2), resulting in exact errors rather than error upper bounds.
Euler splines Em; which are well documented in the literature, or their multiples,
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turn out to be the best approximation. Some of their properties are listed
below.

(i) Em is a spline of order m þ 1 and has simple knots at the integers if m is odd,
and at the half integers i þ 1=2; iAZ; if m is even;

(ii) jjEmjj ¼ 1; with EmðiÞ ¼ ð�1Þi; iAZ;
(iii) EmðxÞ40 for xAð�1=2; 1=2Þ;
(iv) Em is a periodic function of period 2, with Emðx þ 1Þ ¼ �EmðxÞ;
(v) E0ðxÞ ¼ ð�1Þi; i � 1=2oxoi þ 1=2; iAZ:

The derivatives of Euler splines are easy to calculate. For 0pkpm;

EðkÞ
m ðxÞ ¼ Km�k

Km

pk
ð�1Þk=2Em�kðxÞ if k is even;

ð�1Þðk�1Þ=2Em�kðx þ 1=2Þ if k is odd;

(
ð3:1Þ

where Kc; c ¼ 0; 1; 2;y; are the so-called Favard numbers. We have

K0 ¼ 1; K1 ¼ p
2
; K2 ¼ p2

8
; K3 ¼ p3

24
; y and lim

c-N

Kc ¼
4

p
;

K0oK2oK4o?o
4

p
o?oK5oK3oK1:

In particular,

EðmÞ
m ðxÞ ¼ Am

ð�1Þm=2E0ðxÞ if m is even

ð�1Þðm�1Þ=2E0ðx þ 1=2Þ if m is odd;

(

Eðm�1Þ
m ðxÞ ¼ 1

2
Am

ð�1Þðm�1Þ=2E1ðxÞ if m is odd;

ð�1Þðm�2Þ=2E1ðx þ 1=2Þ if m is even;

(

where Am :¼ pm=Km: The reader can see that they are perfect splines with knots at

the integers or half-integers depending on m; and jjEðmÞ
m jj ¼ 2jjEðm�1Þ

m jj ¼ Am:
Euler splines appear as the solution for many extremal problems such as in

the following version of the Kolmogorov–Landau inequalities [4, Chapter 5,
Theorem 7.2].

Theorem A. If FAWm
N
ðRÞ satisfies jjF jjpjjEmjj ¼ 1 and jjF ðmÞjjpjjEðmÞ

m jj ¼ Am; then

jjF ðkÞjjpjjEðkÞ
m jj; k ¼ 1;y;m � 1: ð3:2Þ

Denote by

*P :¼ PAm

mþ1ðT1;RÞ ¼ fsASmþ1ðT1;RÞ: jsðmÞðxÞj ¼ Am; xeZg ð3:3Þ

the class of all cardinal perfect splines with the mth derivative being 7Am: We now

prove the Euler spline Em is the best approximation to 0 from *P:
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Theorem 5. Let mX1 and A ¼ R: The best approximation to f ðxÞ 
 0 from *P is, up to

a sign, the Euler spline EmðxÞ if m is odd, or Emðx þ 1=2Þ if m is even.

Remark. If m ¼ 0; the best approximation is not unique. In fact, any spline in *P has
the same approximation error A0 ¼ 1=K0 ¼ 1:

Proof. We assume m is odd. The proof for even m is almost identical. We first show

if the mth derivative sðmÞ of any sA *P fails to change sign at every integer i; then

jjsðm�1Þjj41
2

Am ¼ jjEðm�1Þ
m jj; thus by Theorem A, jj0 � sjj ¼ jjsjj4jjEmjj ¼ jj0 � Emjj;

which means this s is a worse approximation than EmA *P; thus is not a best

approximation to 0. Indeed, let si be the sign of sðmÞ on ði; i þ 1Þ; then from

sðm�1ÞðxÞ ¼ sðm�1ÞðiÞ þ
Z x

i

sðmÞðtÞ dt ð3:4Þ

we have

sðm�1Þði � 1Þ ¼ sðm�1ÞðiÞ � si�1Am; ð3:5Þ

sðm�1Þði þ 1Þ ¼ sðm�1ÞðiÞ þ siAm: ð3:6Þ

If jsðm�1ÞðiÞj41
2

Am; then jjsðm�1Þjj41
2

Am and s is not a best approximation to 0. Now

we suppose jsðm�1ÞðiÞjp1
2

Am: By (3.6) the only situation in which jsðm�1Þði þ
1Þjp1

2
Am can happen is jsðm�1ÞðiÞj ¼ 1

2
Am and si ¼ �Signðsðm�1ÞðiÞÞ; in which case

sðm�1Þði þ 1Þ ¼ �sðm�1ÞðiÞ: Similarly, it has to be the case that sðm�1Þði � 1Þ ¼
�sðm�1ÞðiÞ and si�1 ¼ Signðsðm�1ÞðiÞÞ ¼ �si: That is, a best approximation to 0 must

change the sign of its mth derivative sðmÞ at each knot i: In another word, only splines
s in the form of

sðxÞ ¼ pm�1ðxÞ7EmðxÞ; ð3:7Þ

where pm�1APm�1 is a polynomial of degree om; can possibly approximate 0 better
than Em:

In the second part of the proof, we find a polynomial pm�1 in (3.7) such that

jjsjj ¼ jjEm � ð�pm�1Þjj is minimal, which will give a best approximation from *P:
Since Em is bounded, pm�1 has to be bounded too, which means it is a constant
polynomial. From the fact �minx EmðxÞ ¼ maxx EmðxÞ ¼ 1; one immediately sees
that pm�1ðxÞ 
 0 makes jjsjj minimal. &

Corollary 6. Let mX1 and A ¼ R: The best approximation to any pm�1APm�1 from *P
is, up to a sign, pm�1ðxÞ7EmðxÞ if m is odd, or pm�1ðxÞ7Emðx þ 1=2Þ if m is even.

Proof. The proof is almost the same as that of Theorem 5. &
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By Corollary 6 the best approximation to any polynomial pr�2APr�2; rX2; by

perfect splines from PM
r ¼ PM

r ðTh;RÞ is

sðxÞ ¼
pr�2ðxÞ7

Mhr�1

Ar�1
Er�1

x

h

� �
if m is odd;

pr�2ðxÞ7
Mhr�1

Ar�1
Er�1

x

h
þ 1

2

	 

if m is even

8>>><
>>>:

with an error of Mhr�1=Ar�1: This is also true for r ¼ 1 with p�1 :¼ 0 by direct

verification although the best approximation is not unique. In fact, any sAPM
1 is a

best approximation to 0 with the same error M:
Theorem 5 also solves an extremal problem, quite classical in nature, namely

among all perfect splines with the ðr � 1Þst derivative 71; which ones have the
smallest norm. This goes back long time. As a matter of fact, the second part of the
proof of Theorem 5 is a special case of Cavaretta [1], (also see Schoenberg [14,
Lecture 9]). Cavaretta’s results are valid for some other knot sequences, but with the

assumption that sðr�1Þ changes sign at every knot (thus are only related to the second

part of our proof). Our set *P allows any sign pattern in sðr�1Þ: We rewrite Theorem 5
in classical language below as a corollary.

Corollary 7. Among all perfect splines in P1
mþ1ðT1;RÞ ¼ fsASmþ1ðT1;RÞ: jsðmÞðxÞj ¼

1; xeZg; only 7A�1
m EmðxÞ; if m is odd, or 7A�1

m Emðx þ 1=2Þ; if m is even, have the

smallest possible uniform norm A�1
m :

In the following theorem we show the order r � 1 is optimal in all cases.

Theorem 8. The approximation order given by inequalities (1.2) is optimal for any

finite or infinite interval A:

Proof. Without loss of generality, we assume 0AA: We first consider the case
or�1ðf ; hÞ40: By the well-known Bernstein-type inequality

jjsðkÞjjpC5h�kjjsjj; sASr; 1pkor;

(see Theorem 1.2 of Chapter 5 in [4] for the case A ¼ ½0; 1�; which can be easily
extended to R for p ¼ N), we have

jjsjjX 1

C5
hr�1jjsðr�1Þjj ¼: C6hr�1jjsðr�1ÞjjXC7or�1ðs; hÞ; sASr; ð3:8Þ

where C5–C7 are constants depending on r: Here again we have used the fact that

hr�1jjsðr�1Þjj is equivalent to or�1ðs; hÞ [8]. Let f be an ðr � 1Þ-fold integral of

f ðr�1ÞðxÞ :¼ ð�1Þi
xAðih; ði þ 1ÞhÞ; ia0;

0 xAð0; hÞ:

(
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Then f belongs to SrCCðAÞ; and so does f � s for any sAPM
r CSr with any M40:

We apply (3.8) to f � s and f and obtain

jjf � sjjXC6hr�1jjf ðr�1Þ � sðr�1ÞjjX1
2

C6hr�1jjf ðr�1ÞjjX1
2

C7or�1ðf ; hÞ; ð3:9Þ

where in the second inequality we have used the facts jjf ðr�1Þ � sðr�1Þjj ¼
maxðM; j1 � MjÞX1=2 and jjf ðr�1Þjj ¼ 1: This shows or�1ðf ; hÞ is the optimal order
for functions f in CðAÞ with or�1ðf ; hÞ40:

Now let fACðAÞ with or�1ðf ; hÞ ¼ 0; that is, fAPr�2: Then the first part of (3.9),
which is valid for all fASr; becomes

jjf � sjjXC6hr�1jjf ðr�1Þ � sðr�1Þjj ¼ C6hr�1jjsðr�1Þjj ¼ C6Mhr�1;

which shows the second part of (1.2) is optimal. &

In Theorem 8 we showed (1.2) is optimal, in the so-called worst scenario sense for
the case or�1ðf ; hÞ40: We now show r � 1 is the best order in the sense that f has an

approximation order oðhr�1Þ if and only if fAPr�1:

Theorem 9. Let A be any interval and fACðAÞ: Then the following statements are

equivalent:

(i) for each h40; there exists a spline ShAPMh
r ðTh;AÞ for some Mh40 such that

jjf � Shjj ¼ oðhr�1Þ; ð3:10Þ

(ii) f is a polynomial of degree or on A:

Proof. We first prove (i) implies (ii). Let A be finite with a length comparable to 1

and let S̃h be a best spline approximation to f from SrðTh;AÞ: We have

jjf � S̃hjjpjjf � Shjj ¼ oðhr�1Þ: ð3:11Þ
The inverse theorem for spline approximation from SrðTh;AÞ ([5], also see Section
12.2 of [4]) gives

orðf ; hÞpC max
npmp2n

jjf � S̃1=mjj ¼ oðhr�1Þ; ð3:12Þ

where n :¼ ½1=h�: Therefore

orðSh; hÞporðf � Sh; hÞ þ orðf ; hÞpCjjf � Shjj þ orðf ; hÞ ¼ oðhr�1Þ; ð3:13Þ
and, by Hu and Yu [8],

oðSðr�1Þ
h ; hÞBh�rþ1orðSh; hÞ ¼ oð1Þ: ð3:14Þ

We observe that

oðSðr�1Þ
h ; hÞ ¼ 2Mh if S

ðr�1Þ
h changes sign at least once

0 otherwise:

(
ð3:15Þ
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Note here ‘‘otherwise’’ means ShAPr�1: We now prove f is a polynomial in two
cases.

Case 1: There exists an h040 such that S
ðr�1Þ
h changes sign at least once for every

hoh0: Then by (3.14) and (3.15)

oð1Þ ¼ oðSðr�1Þ
h ; hÞ ¼ 2Mh ¼ 2jjSðr�1Þ

h jj; hoh0:

Hence

or�1ðSh; hÞphr�1jjSðr�1Þ
h jj ¼ oðhr�1Þ:

From (3.10)

or�1ðf ; hÞpor�1ðf � Sh; hÞ þ or�1ðSh; hÞ ¼ oðhr�1Þ; ð3:16Þ
which implies that fAPr�2; (see for example, Theorem 2.59 of Schumaker [13]).

Case 2: There exists a sequence fhng with limn-N hn ¼ 0 such that S
ðr�1Þ
hn

have no

sign changes, that is, fShn
g is a sequence of polynomials of degree r � 1: Since Shn

converge to f in norm, f is in the closure of Pr�1; which is a closed subspace.
Therefore fAPr�1:

We now consider the case A ¼ R or A ¼ ½0;NÞ: Since (3.10)) is true on every
interval ½i; i þ 1� that is contained in A; therefore f is a piecewise polynomial of
degree or on A with possible knots on every integer i: But if we consider every
interval ½i � 1; i þ 1� that is contained in A; we know no such i is actually a knot, thus
f is a polynomial on the whole interval A:

We prove that (ii) implies (i) also in two cases.

Case 1: f is a polynomial of degree exactly r � 1: Since fAPM
r ðTh;AÞ with M ¼

f ðr�1Þ for every h; one can choose Sh ¼ f for every h; which results in jjf � Shjj ¼ 0;
of course.

Case 2: f is a polynomial of degree or � 1: Then fePM
r ðTh;AÞ no matter what M

or h is. By Theorem 1, the error is pCMhr�1; where C is independent of h; while M

can be freely chosen. One can choose Mh such that Mh-0 as h-0 (for example

Mh ¼ h), and use for Sh a (near) best approximation to f from PMh
r ðTh;AÞ: &

Remark. It is unusual that polynomials of lower degrees have nonzero errors while
those of degree r � 1 are approximated exactly. This again reflects the fact that the

only polynomials belonging to
S

M;h40 P
M
r ðTh;AÞ are those of degree exactly r � 1:

We conclude this paper by some word on the existence of best approximation from

PM
r ¼ PM

r ðTh;AÞ defined in (1.1). Let s ¼ fsiMgiAL be a finite or (bi)infinite

sequence with si ¼ 1 or �1; and L :¼ fi : ði; i þ 1Þ-Aa|g: Let SrAPM
r be the spline

such that

Sðr�1Þ
s ðxÞ ¼ siM; xAði; i þ 1Þ and Ssð0Þ ¼ S0

rð0Þ ¼ ? ¼ Sðr�2Þ
s ð0Þ ¼ 0:

Then

PM
r ¼

[
ðSr þ Pr�2Þ;
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where the union runs over all possible sequences s defined above. Each affine space

Ss þ Pr�2 is a closed set, so is PM
r if A is finite. We have just proved

Theorem 10. If A is a finite interval, then best approximation from PM
r to any fACðAÞ

exists.
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